Synthesis and Characterization of VO₂ (M) Nanocomposites and The Applications of Nanothermochromism to Smart Architecture Glazing

Chang LIU^{a,1}, Yi LONG^{a,2}

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 ¹ <u>LIUC0036@E.NTU.EDU.SG</u>; ² <u>LONGYI@NTU.EDU.SG</u>

Abstract

Vanadium dioxide (VO₂) has been a leading thermochromic material. The M (monoclinic) phase of VO₂ exhibits an excellent temperature-responsive behavior at a critical temperature (τ_c) at 341K (68°C), near the room temperature, which makes it a promising candidate to smart architecture glazing ^[11]. VO₂ is able to adjust the inflow of solar heat by switching the transmittance in the infrared (IR) region (780 nm – 2500 nm), while maintaining the visible transmittance. However the main obstacles of VO₂ to commercialization in large scale are low luminous transmittance (T_{lum}) while maintaining high solar modulation ability (ΔT_{sol}) due to strong light absorption in the visible wavelength ^[2, 3]. To tackle this issue, Li S. Y. *et. al.* proposed nanothermochromism, which was defined as integrating VO₂-based nanoparticles into transparent matrix. It was claimed that VO2 nanoparticles dispersed in a dielectric host are more advantageous than VO2 continuous thin solid films in smart window applications as they offer much higher T_{lum} and enhanced ΔT_{sol} ^[4]. In this project, the innovative VO₂ nanocomposites were well-prepared via industrial scalable techniques (bead-milling + casting) to migrate bead-milled VO₂ nanoparticles with the size below 50nm into the supporting matrix (Si-Al gel or PMMA). The aim of this project is to conquer the challenges of enhancing both luminous transmittance (T_{lum}) and solar modulation ability (ΔT_{sol}).

References

[1] M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions and I. Ridley, Energ Buildings, 42 (2010) 1666-1673.

- [2] C. G. Granqvist, Sol Energ Mat Sol C, 91 (2007) 1529-1598.
- [3] N. R. Mlyuka, G. A. Niklasson and C. G. Granqvist, Phys Status Solidi A, 206 (2009) 2155-2160.
- [4] S. Y. Li, G. A. Niklasson and C. G. Granqvist, J Appl Phys, 108 (2010) 063525.